3.1.60 \(\int \frac {x \sin (c+d x)}{a+b x^2} \, dx\) [60]

Optimal. Leaf size=177 \[ \frac {\text {Ci}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right ) \sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}+\frac {\text {Ci}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right ) \sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}-\frac {\cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}+\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{2 b} \]

[Out]

1/2*cos(c+d*(-a)^(1/2)/b^(1/2))*Si(d*x-d*(-a)^(1/2)/b^(1/2))/b+1/2*cos(c-d*(-a)^(1/2)/b^(1/2))*Si(d*x+d*(-a)^(
1/2)/b^(1/2))/b+1/2*Ci(d*x+d*(-a)^(1/2)/b^(1/2))*sin(c-d*(-a)^(1/2)/b^(1/2))/b+1/2*Ci(-d*x+d*(-a)^(1/2)/b^(1/2
))*sin(c+d*(-a)^(1/2)/b^(1/2))/b

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {3426, 3384, 3380, 3383} \begin {gather*} \frac {\sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{2 b}+\frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}+c\right ) \text {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}-\frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}+c\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}+\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (x d+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*Sin[c + d*x])/(a + b*x^2),x]

[Out]

(CosIntegral[(Sqrt[-a]*d)/Sqrt[b] + d*x]*Sin[c - (Sqrt[-a]*d)/Sqrt[b]])/(2*b) + (CosIntegral[(Sqrt[-a]*d)/Sqrt
[b] - d*x]*Sin[c + (Sqrt[-a]*d)/Sqrt[b]])/(2*b) - (Cos[c + (Sqrt[-a]*d)/Sqrt[b]]*SinIntegral[(Sqrt[-a]*d)/Sqrt
[b] - d*x])/(2*b) + (Cos[c - (Sqrt[-a]*d)/Sqrt[b]]*SinIntegral[(Sqrt[-a]*d)/Sqrt[b] + d*x])/(2*b)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3426

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c +
 d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ
[p, -1]) && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x \sin (c+d x)}{a+b x^2} \, dx &=\int \left (-\frac {\sin (c+d x)}{2 \sqrt {b} \left (\sqrt {-a}-\sqrt {b} x\right )}+\frac {\sin (c+d x)}{2 \sqrt {b} \left (\sqrt {-a}+\sqrt {b} x\right )}\right ) \, dx\\ &=-\frac {\int \frac {\sin (c+d x)}{\sqrt {-a}-\sqrt {b} x} \, dx}{2 \sqrt {b}}+\frac {\int \frac {\sin (c+d x)}{\sqrt {-a}+\sqrt {b} x} \, dx}{2 \sqrt {b}}\\ &=\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \int \frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{\sqrt {-a}+\sqrt {b} x} \, dx}{2 \sqrt {b}}+\frac {\cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \int \frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{\sqrt {-a}-\sqrt {b} x} \, dx}{2 \sqrt {b}}+\frac {\sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \int \frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{\sqrt {-a}+\sqrt {b} x} \, dx}{2 \sqrt {b}}-\frac {\sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \int \frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{\sqrt {-a}-\sqrt {b} x} \, dx}{2 \sqrt {b}}\\ &=\frac {\text {Ci}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right ) \sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}+\frac {\text {Ci}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right ) \sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}-\frac {\cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}+\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.13, size = 163, normalized size = 0.92 \begin {gather*} \frac {\text {Ci}\left (d \left (\frac {i \sqrt {a}}{\sqrt {b}}+x\right )\right ) \sin \left (c-\frac {i \sqrt {a} d}{\sqrt {b}}\right )+\text {Ci}\left (d \left (-\frac {i \sqrt {a}}{\sqrt {b}}+x\right )\right ) \sin \left (c+\frac {i \sqrt {a} d}{\sqrt {b}}\right )+\cos \left (c-\frac {i \sqrt {a} d}{\sqrt {b}}\right ) \text {Si}\left (d \left (\frac {i \sqrt {a}}{\sqrt {b}}+x\right )\right )-\cos \left (c+\frac {i \sqrt {a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {i \sqrt {a} d}{\sqrt {b}}-d x\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*Sin[c + d*x])/(a + b*x^2),x]

[Out]

(CosIntegral[d*((I*Sqrt[a])/Sqrt[b] + x)]*Sin[c - (I*Sqrt[a]*d)/Sqrt[b]] + CosIntegral[d*(((-I)*Sqrt[a])/Sqrt[
b] + x)]*Sin[c + (I*Sqrt[a]*d)/Sqrt[b]] + Cos[c - (I*Sqrt[a]*d)/Sqrt[b]]*SinIntegral[d*((I*Sqrt[a])/Sqrt[b] +
x)] - Cos[c + (I*Sqrt[a]*d)/Sqrt[b]]*SinIntegral[(I*Sqrt[a]*d)/Sqrt[b] - d*x])/(2*b)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(485\) vs. \(2(137)=274\).
time = 0.06, size = 486, normalized size = 2.75

method result size
risch \(\frac {i {\mathrm e}^{\frac {i b c +d \sqrt {a b}}{b}} \expIntegral \left (1, \frac {i b c +d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 b}+\frac {i {\mathrm e}^{\frac {i b c -d \sqrt {a b}}{b}} \expIntegral \left (1, -\frac {-i b c +d \sqrt {a b}+b \left (i d x +i c \right )}{b}\right )}{4 b}-\frac {i {\mathrm e}^{-\frac {i b c +d \sqrt {a b}}{b}} \expIntegral \left (1, -\frac {i b c +d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 b}-\frac {i {\mathrm e}^{-\frac {i b c -d \sqrt {a b}}{b}} \expIntegral \left (1, \frac {-i b c +d \sqrt {a b}+b \left (i d x +i c \right )}{b}\right )}{4 b}\) \(230\)
derivativedivides \(\frac {-\frac {d^{2} \left (d \sqrt {-a b}+c b \right ) \left (\sinIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\cosineIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )\right )}{2 b^{2} \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}+\frac {d^{2} \left (d \sqrt {-a b}-c b \right ) \left (\sinIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\cosineIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )\right )}{2 b^{2} \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}-d^{2} c \left (-\frac {\sinIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\cosineIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )}{2 b \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}-\frac {\sinIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\cosineIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )}{2 b \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}\right )}{d^{2}}\) \(486\)
default \(\frac {-\frac {d^{2} \left (d \sqrt {-a b}+c b \right ) \left (\sinIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\cosineIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )\right )}{2 b^{2} \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}+\frac {d^{2} \left (d \sqrt {-a b}-c b \right ) \left (\sinIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\cosineIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )\right )}{2 b^{2} \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}-d^{2} c \left (-\frac {\sinIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\cosineIntegral \left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )}{2 b \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}-\frac {\sinIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\cosineIntegral \left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )}{2 b \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}\right )}{d^{2}}\) \(486\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(d*x+c)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/d^2*(-1/2*d^2*(d*(-a*b)^(1/2)+c*b)/b^2/(-(d*(-a*b)^(1/2)+c*b)/b+c)*(Si(d*x+c-(d*(-a*b)^(1/2)+c*b)/b)*cos((d*
(-a*b)^(1/2)+c*b)/b)+Ci(d*x+c-(d*(-a*b)^(1/2)+c*b)/b)*sin((d*(-a*b)^(1/2)+c*b)/b))+1/2*d^2*(d*(-a*b)^(1/2)-c*b
)/b^2/((d*(-a*b)^(1/2)-c*b)/b+c)*(Si(d*x+c+(d*(-a*b)^(1/2)-c*b)/b)*cos((d*(-a*b)^(1/2)-c*b)/b)-Ci(d*x+c+(d*(-a
*b)^(1/2)-c*b)/b)*sin((d*(-a*b)^(1/2)-c*b)/b))-d^2*c*(-1/2/b/(-(d*(-a*b)^(1/2)+c*b)/b+c)*(Si(d*x+c-(d*(-a*b)^(
1/2)+c*b)/b)*cos((d*(-a*b)^(1/2)+c*b)/b)+Ci(d*x+c-(d*(-a*b)^(1/2)+c*b)/b)*sin((d*(-a*b)^(1/2)+c*b)/b))-1/2/b/(
(d*(-a*b)^(1/2)-c*b)/b+c)*(Si(d*x+c+(d*(-a*b)^(1/2)-c*b)/b)*cos((d*(-a*b)^(1/2)-c*b)/b)-Ci(d*x+c+(d*(-a*b)^(1/
2)-c*b)/b)*sin((d*(-a*b)^(1/2)-c*b)/b))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x^2+a),x, algorithm="maxima")

[Out]

-1/2*((cos(c)^2 + sin(c)^2)*x*cos(d*x + c) + (x*cos(d*x + c)^2*cos(c) + x*cos(c)*sin(d*x + c)^2)*cos(d*x + 2*c
) + 2*(((b*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ((b*cos(c)^2 + b*sin(c
)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c)^2)*integrate(1/2*(b*x^2 - a)*cos(d*x + c)/(b^2*d*x^4 +
2*a*b*d*x^2 + a^2*d), x) + 2*(((b*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 +
 ((b*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c)^2)*integrate(1/2*(b*x^2 - a)*cos
(d*x + c)/((b^2*d*x^4 + 2*a*b*d*x^2 + a^2*d)*cos(d*x + c)^2 + (b^2*d*x^4 + 2*a*b*d*x^2 + a^2*d)*sin(d*x + c)^2
), x) + (x*cos(d*x + c)^2*sin(c) + x*sin(d*x + c)^2*sin(c))*sin(d*x + 2*c))/(((b*cos(c)^2 + b*sin(c)^2)*d*x^2
+ (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ((b*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d
)*sin(d*x + c)^2)

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.36, size = 146, normalized size = 0.82 \begin {gather*} \frac {-i \, {\rm Ei}\left (i \, d x - \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (i \, c + \sqrt {\frac {a d^{2}}{b}}\right )} - i \, {\rm Ei}\left (i \, d x + \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (i \, c - \sqrt {\frac {a d^{2}}{b}}\right )} + i \, {\rm Ei}\left (-i \, d x - \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (-i \, c + \sqrt {\frac {a d^{2}}{b}}\right )} + i \, {\rm Ei}\left (-i \, d x + \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (-i \, c - \sqrt {\frac {a d^{2}}{b}}\right )}}{4 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x^2+a),x, algorithm="fricas")

[Out]

1/4*(-I*Ei(I*d*x - sqrt(a*d^2/b))*e^(I*c + sqrt(a*d^2/b)) - I*Ei(I*d*x + sqrt(a*d^2/b))*e^(I*c - sqrt(a*d^2/b)
) + I*Ei(-I*d*x - sqrt(a*d^2/b))*e^(-I*c + sqrt(a*d^2/b)) + I*Ei(-I*d*x + sqrt(a*d^2/b))*e^(-I*c - sqrt(a*d^2/
b)))/b

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \sin {\left (c + d x \right )}}{a + b x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x**2+a),x)

[Out]

Integral(x*sin(c + d*x)/(a + b*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(d*x+c)/(b*x^2+a),x, algorithm="giac")

[Out]

integrate(x*sin(d*x + c)/(b*x^2 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\sin \left (c+d\,x\right )}{b\,x^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*sin(c + d*x))/(a + b*x^2),x)

[Out]

int((x*sin(c + d*x))/(a + b*x^2), x)

________________________________________________________________________________________